
L-functions and Class Numbers
Student Number Theory Seminar

S. M.-C.

24 September 2015

We follow Romyar Sharifi’s Notes on Iwasawa Theory, with some help from Neukirch’s Algebraic
Number Theory.

1 L-functions of Dirichlet Characters

1.1 Dirichlet Characters

A Dirichlet character is a completely multiplicative function χ : Z → C which is periodic with
some period n and satisfies χ(a) 6= 0 precisely when (a, n) = 1. A Dirichlet character can also
be regarded a character χ : (Z/nZ)∗ → C. It is not terribly hard to see these two notions are
equivalent, and we will use this equivalence without warning (though we will use the second
notion whenever possible).

The conductor fχ of a Dirichlet character χ : (Z/nZ)∗ → C is the smallest positive integer f
such that χ factors through (Z/ f Z)∗.

(Z/nZ)∗
χ //

mod f &&

C

(Z/ f Z)∗
χ̃

;;

We say that a Dirichlet character is primitive if its conductor is equal to its period (i.e. it does not
factor as above). From any Dirichlet character χ : (Z/nZ)∗ → C of conductor f we can produce
an associated primitive Dirichlet character of period and conductor f by taking the character
χ̃ : (Z/ f Z)∗ → C in the above diagram. If we regard Dirichlet characters as maps Z→ C, then χ̃
is the Dirichlet character with least period such that χ̃(a) = χ(a) whenever (a, n) = 1. (Intuitively,
we’re “filling in” as many zeros as possible in the non-primitive Dirichlet character).

We say a Dirichlet character χ is even or odd according as χ(−1) = 1 or χ(−1) = −1, respec-
tively.
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Table 1: A Dirichlet character of period 14 and its associated primitive character of period 7. Here
ζ = e2πi/6 is a 6th root of unity.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 period conductor parity

χ 0 1 0 ζ 0 ζ5 0 0 0 ζ2 0 ζ4 0 −1 14 7 odd

χ̃ 0 1 ζ2 ζ ζ4 ζ5 −1 0 1 ζ2 ζ ζ4 ζ5 −1 7 7 odd

1.2 L-functions

To every Dirichlet character χ we associate an L-series L(χ, s), defined by

L(χ, s) = ∑
n≥1

χ(n)
ns .

This series converges absolutely for s ∈ C with re(s) > 1, and converges uniformly on re(s) > 1+ ε
(for any ε > 0). The complete multiplicativity of Dirichlet characters imply that the L-series has
an Euler product:

L(χ, s) = ∏
p prime

1
1− χ(p)p−s

for re(s) > 1.

Theorem 1.1. The L-series L(χ, s) has a meromorphic continuation to the whole complex plane (which we
also denote L(χ, s)). If χ is not the trivial character then L(χ, s) is in fact holomorphic, while if χ is trivial
then ζ(s) = L(χ, s) has a simple pole with residue 1 at s = 1.

This meromorphic continuation we call the L-function of χ.
To express the special values of L-functions and their functional equations, we’ll need Gauss

sums. The Gauss sum associated to a Dirichlet character χ of period n is

τ(χ) =
n

∑
a=1

χ(a)e2πia/n.

The next lemma records some of their basic properties.

Lemma 1.2. If χ is a primitive Dirichlet character then

|τ(χ)| =
√

fχ,

and for all b ∈ Z,

χ(b)τ(χ) =
fχ

∑
a=1

χ(a)e2πiab/ fχ .

(Here χ(a) = χ(a) is the conjugate Dirichlet character).

In order to give a functional equation for our L-functions, we make the following defintions.
Let

δχ =
1− χ(−1)

2
=

{
0 if χ is even

1 if χ is odd
,
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an indicator of whether χ is even or odd; let

εχ =
τ(χ)

iδχ
√

fχ
,

some algebraic number (of absolute value 1); and let

Λ(χ, s) =
(

fχ

π

)s/2
Γ
(

s+δχ

2

)
L(χ, s).

Recall that L(χ, s) is a product over primes; we should think of the Γ-function in the above expres-
sion as adding in the infinite prime.

We have the following functional equation for Λ.

Theorem 1.3. For χ a primitive Dirichlet character,

Λ(χ, s) = εχΛ(χ, 1− s).

1.3 Special Values

We are interested in these L-functions for their special values (at integers). In order to compute
these special values we introduce Bernoulli numbers, along with a slight generalization.

Define the Bernoulli numbers Bn for n ≥ 0 by

t
et − 1

= ∑
n≥0

Bn
tn

n!
.

The inverse of this power series is

et − 1
t

= ∑
n≥0

tn

(n + 1)!
,

and we can use this fact to inductively compute the Bn.

Table 2: The first few Bernoulli numbers.
n 0 1 2 3 4 5 6 7 8 9 10

Bn 1 − 1
2

1
6 0 − 1

30 0 1
42 0 − 1

30 0 5
66

Note in particular that Bn = 0 for all odd n > 1 (which can be seen by showing that t
et−1 + 1

2 t
is an even function).

For χ a primitive Dirichlet character, define generalized Bernoulli numbers Bn,χ for n ≥ 0 by

fχ

∑
a=1

χ(a)
teat

e fχt − 1
= ∑

n≥0
Bn,χ

tn

n!
.

In fact in this definition we can replace fχ by any multiple of it, using the identity

r−1

∑
k=0

xk

xr − 1
=

1
x− 1

.

Note that χ̃ is odd, and Bn,χ̃ = 0 for even n. In general, Bn,χ = 0 for n 6≡ δχ mod 2, with the
single exception of B1,1 = 1

2 (where 1 denotes the trivial character).
Now we can give the following special values for our L-functions.
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Table 3: The first few Bernoulli numbers associated to the primitive character χ̃ of Table 1.1.
n 0 1 2 3 4 5 6 7 8 9 10

Bn,χ̃ 0 − 4
7 −

2
√

3
7 i 0 3 + 3

√
3i 0 − 445

7 −
565
√

3
7 i 0 22249

7 + 30049
√

3
7 i 0 −281223− 385551

√
3i 0

Proposition 1.4. Let χ be a primitive Dirichlet character. Then for all integers n ≥ 1, we have

L(χ, 1− n) = −
Bn,χ

n
.

Proof. Complex analysis.

Theorem 1.5. Let χ be a non-trivial primitive Dirichlet character. Then

L(χ, 1) =


πiτ(χ)

fχ
B1,χ if χ is odd,

−τ(χ)

fχ

fχ

∑
a=1

χ(a) log
∣∣∣1− e2πia/ fχ

∣∣∣ if χ is even.

Proof. Odd case: functional equation and Γ(1/2) =
√

π give

Λ(χ, 1) = εχΛ(χ, 0)(
fχ

π

)1/2
Γ
(

1+1
2

)
L(χ, 1) =

τ(χ)

i1
√

fχ

(
fχ

π

)0/2
Γ
(

0+1
2

)
L(χ, 0)

L(χ, 1) = −τ(χ)iπ
fχ

L(χ, 0)

L(χ, 1) =
τ(χ)iπ

fχ
B1,χ

Even case: using the Gauss sum formula, the changing the order of summantion, then recog-
nizing the power series of − log(1− z),

L(χ, 1) = ∑
n≥1

χ(n)
n

= ∑
n≥1

1
τ(χ)

fχ

∑
a=1

χ(a)e2πian/ fχ

n

=
1

τ(χ)

fχ

∑
a=1

χ(a) ∑
n≥1

e2πian/ fχ

n

= − 1
τ(χ)

fχ

∑
a=1

χ(a) log(1− e2πia/ fχ)

Since χ is even we have τ(χ) = τ(χ), so fχ = τ(χ)τ(χ). Also since χ is even and we are summing
over all a mod fχ, we can replace the log with

1
2

(
log(1− e2πia/ fχ) + log(1− e2πi( fχ−a)/ fχ)

)
= log

∣∣∣1− e2πia/ fχ

∣∣∣ .

This changes the above equation to

L(χ, 1) = −τ(χ)

fχ

fχ

∑
a=1

χ(a) log
∣∣∣1− e2πia/ fχ

∣∣∣
as desired.
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2 ζ-functions of Number Fields

2.1 ζ-functions and L-functions

Recall the norm of an ideal a ⊂ OF to be N(a) = [OF : a]. We define a ζ-series for a number field
F by

ζF(s) = ∑
a⊂OF

1
N(a)s ,

where the sum is over non-zero ideals of OF. Note that ζQ(s) = ζ(s) is the classical Riemann
ζ-function. As in the case of L-series above, this ζ-series has an Euler product,

ζF(s) = ∏
p⊂O

1
1− N(p)−s ,

where the product is over non-zero prime ideals of OK. These ζ-series also have a meromorphic
continuation and functional equation.

Now suppose F is an abelian extension of Q. Then Q ⊂ F ⊂ Q(µn) for some n, and

Gal(F/Q) ∼= Gal(Q(µn)/Q)
/

Gal(Q(µn)/F) ∼= (Z/nZ)∗
/

Gal(Q(µn)/F)

realizes Gal(F/Q) as a quotient of (Z/nZ)∗. Given a character of Gal(F/Q), we can lift it to
a character of (Z/nZ)∗, which has an associated primitive Dirichlet character. Define X(F) to
be the set of Dirichlet characters produced in this way, i.e. the set of primitive Dirichlet charac-
ters associated to characters of (Z/nZ)∗ that factor through Gal(F/Q). We have the following
relationship between the ζ-function of F and the L-functions of these Dirichlet characters.

Proposition 2.1. For F an abelian field,

ζF(s) = ∏
χ∈X(F)

L(χ, s).

(Note by examining both sides’ poles at s = 1, we can see that L(χ, 1) 6= 0 for a non-trivial
character χ, and this can be used to prove Dirichlet’s theorem on primes in arithmetic progres-
sions.)

Proof. Let p be a prime which decomposes in F as p = (p1 · · · pr)e, with N(pi) = f . Then p
contributes (1− p− f s)−r to the Euler product of ζF(s), and contributes ∏χ∈X(F)(1− χ(p)p−s)−1

to the product of L-functions. We want to show that these are the same. Seems like this is done
essentially by carefully examining how primes split, but the rest of the proof isn’t clear to me.

For example, consider F = Q(i). Then Gal(Q(i)/Q) ∼= (Z/4Z)∗, which has two associated
primitive Dirichlet characters: the trivial character 1, and the character χ defined by

χ(n) =

{
1 if n ≡ 1 mod 4,

−1 if n ≡ 3 mod 4.

In this field 2 ramifies, primes p ≡ 1 mod 4 split completely, and primes p ≡ 3 mod 4 are inert.
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Thus

ζQ(i)(s) = (1− 2−s)−1 ∏
p≡1 mod 4

(1− p−s)−2 ∏
p≡3 mod 4

(1− p−2s)−1

= (1− 2−s)−1 ∏
p≡1 mod 4

(1− p−s)−2 ∏
p≡3 mod 4

(1− p−s)−1(1 + p−s)−1

= L(1, s) ∏
p≡1 mod 4

(1− p−s)−1 ∏
p≡3 mod 4

(1 + p−s)−1

= L(1, s)L(χ, s).

2.2 Regulators

Let F/Q be a number field. Let r1 = r1(F) be the number of real embeddings of F, and r2 = r2(F)
the number of conjugate pairs of complex embeddings. Denote its discriminant by dF.

Say that a set of units in OF is independent if the subgroup of O∗F it generates is free abelian,
with the chosen units as generators. Let r = rankZO∗F = r1 + r2 − 1, and choose embeddings
σ1, . . . , σr+1 : F → C corresponding to the archimedean places of F (including one of each conju-
gate pair of complex embeddings). Define the regulator of a set α1, . . . , αr of units to be

RF(αi) =

∣∣∣∣∣∣∣∣det


c1 log|σ1(α1)| · · · c1 log|σ1(αr)|

...
...

cr log|σr(α1)| · · · cr log|σr(αr)|


∣∣∣∣∣∣∣∣

where

ci =

{
1 if σi is real,

2 if σi is complex.

Note that we omit σr+1 from the definition of regulator. The choice of embedding to omit does
not affect the result, because for any α ∈ O∗F we have

r+1

∑
i=1

ci log|σi(α)| = log
r+1

∏
i=1
|σi(α)|ci = 0,

so the omitted row with entries cr+1 log|σr+1(αj)| is (minus) the sum of the rows of the matrix.
The regulators of different sets of units have the following relation.

Lemma 2.2. Suppose
B = µ · 〈β1, . . . , βr〉 ⊂ A = µ(F) · 〈α1, . . . , αr〉

for βi and αi independent sets of units, and r = rankZO∗F. Then

RF(βi)

RF(αi)
= [A : B].

Thus independent sets of units generating the same subgroup of O∗F/µ(F) have the same
regulator. We define the regulator RF of F to be the regulator RF(αi) of a set of units α1, . . . , αr with

O∗F = µ(F) · 〈α1, . . . , αr〉.
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2.3 Class Number Formula

Theorem 2.3. The ζ-series of a number field F has a meromorphic continuation (which we also denote ζF)
to the whole complex plane, with the only pole a simple pole at s = 1. Setting

ΛF(s) =
(

2−r2 π−[F:Q]|dF|1/2
)s

Γ
( s

2
)r1 Γ(s)r2 ζF(s),

we have the functional equation
ΛF(s) = ΛF(1− s).

The ζ-function of F encodes much of the arithmetic data of F in its pole at s = 1. Let wF =
#µ(F) be the number of roots of unity in F.

Theorem 2.4. For a number field F, the ζ-function ζF has a simple pole at s = 1 with residue

ress=1 ζF(s) = 2r1(2π)r2
hFRF

wF|dF|1/2 .

Since the Riemann ζ-function (i.e. the Dirichlet L-fuction of the trivial character) has a simple
pole at s = 1 with residue 1, we can combine Theorem 2.4 with Proposition 2.1 to obtain the
analytic class number formula.

Theorem 2.5 (Analytic class number formula). Let F be a number field. Then

∏
χ∈X(F)

χ 6=1

L(χ, 1) = 2r1(2π)r2
hFRF

wF|dF|1/2 .
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